
Implementing Fault-Tolerant Sensors*

Keith Marzullo ,G,_',4 _q"-

/Aj- 3 --c

TR 89-997 o2 __ "76_

May 1989 _ ._

Department of Computer Science
Comell University
Ithaca, NY 14853-7501

"This work was supported by the Defense Advanced Research Projects Agency (DoD) under ARPA

order 6037, Contract N00140-87-C-8904.

(

\

\

Implementing Fault-Tolerant Sensors*

Keith Marzullo t

Cornell University

Department of Computer Science

April 27, 1989

Abstract

One aspect of fault-tolerance in process control programs is the

ability to tolerate sensor failure. This paper presents a methodology

for transforming a process control program that cannot tolerate sensor

failures to one that can. Additionally, a hierarchy of fMlure models is
identified.

Keywords: fault-tolerance, process control systems, real-time
distributed systems.

1 Introduction

A process control program communicates and synchronizes with a physical

process. Typically, the program reads values from the physical process

through sensors and writes values through actuators, as shown schemati-

caUy in figure 1.

"Submitted to the lOth Real-Time Systems Symposium, Los Angeles, December 1989.
tThis work was supported by the Defense Advanced Research Projects Agency (DoD)

under ARPA order 6037, Contract N00140-87-C-8904 The views, opinions, and findings
contained in this report are those of the authors and should not be construed as an official
Department of Defense position, policy, or decision.

process

control

program

--_ actuator

sensor

Figure 1: A real-time program

This paper concerns sensor failures. We assume that a programmer writes

the program of figure 1 assuming that sensors return accurate values, and

provide a methodology for transforming this program to one that tolerates
sensors that return inaccurate values.

There are two ways to tolerate sensor failures:

. Based on the sensor's specification, the control program can deter-

mine that a sensor has failed from the value provided by the sensor.

For example, if the control program used a sensor to measure the

temperature of a reaction vessel and the thermometer read a value

too high to be realistic, then the control program would know the
thermometer has failed.

. The sensor can be rephcated, either physically or logically, as shown

in figure 2. The values of the rephcated sensors are compared and

a correct sensor value calculated. For example, instead of one ther-

mometer, there could be two thermometers and one pressure gauge

on the vessel. From Boyle's law PV = nRT, we can calculate three

independent temperature readings (or pressure readings, if desired).

As long as no more than one sensor fails, the control program can

continue to execute correctly. [Sch86a]

These two approaches can either be used independently or together. How-

ever, the second approach is better suited for process control programs,

because the program always gets an answer in a predictable amount of

2

process

control

program

actuator

"averager"

sensor

= _ sensor

sensor

Figure 2: Replicated sensors

time. The first approach can only be used if no deadline will be missed due

to the loss of sensor information.

The approach we develop is as follows:

. Write the process control program with reference to the actual state

variables of the physical system. For example, the program control-

ling the reaction vessel would refer to the temperature T.

. For each physical variable referenced by the control program through

a sensor, replace it with a reference to an abstract sensor. An abstract

sensor is an interval that contains the physical variable. This step can

not be done automatically; the specification of the process control

program will have to be changed to refer to abstract sensors.

. Implement a set of abstract sensors based on a set of physical sensors.

A physical sensor is a device that "reads" a physical state variable.

This step cannot be done automatically, since it may take some knowl-

edge of the physical process to implement abstract sensors.

4. Apply a fault-tolerant averaging algorithm to these abstract sensor

values in order to calculate derive an abstract sensor that is correct.

3

The algorithm assumes that out of n sensors no more than some

parameter f of them are incorrect. The relation between n and f

(outside of n > f) depends on the way sensors can fail. _Ve will

assume that abstract sensors fail independently of each other.

This paper is a generalization of the work done by the author and pre-

sented in [MO83,Mar84]. This earlier work looked at the problem of clock

synchronization in a distributed system. A clock is a special kind of sensor,

in that the physical process it senses can be expressed simply. In this paper,

algorithm I and theorem 3 are taken directly from [Mar84]. Section 2 is
new, as well as the different failure models discussed in section 3.

The methodology presented in this paper can be thought of as a general-

ization of the state machine approach [Sch86b,Lam84]. A related problem,

inezact agreement, is presented in [MS85], but the goals are different. Our

goal is to dynamically calculate bounds on the accuracy of a sensor value,

not to have multiple processors agree on a sensor value. A different ap-

proach to agreement among sensors is taken in [Mac84], in which sensor
failure is not considered.

In section 2, we define a method of representing sensors that makes them

amenable to replication. In section 3, we discuss sensor failure models and

present a sensor averaging algorithm. Section 4 contains a demonstration

of our methodology.

2 Physical Variables and Sensors

A variable in a computer process is quite different from a state variable in a

physical process. A computer variable takes on values from a finite domain,

and can assume only a bounded number of values in any finite time period.

A physical state variable, however, may take on any real value and can

have an unbounded number of values within any non-zero time period. A

convenient way to represent physical state variables in computer programs

is as functions. The domain of a physical variable is typically time, but it

can be some other physical variable, depending on the safety properties of

interest1.

There are three distinct values associated with a physical variable: the

physical variable itself, the value returned by a sensor called here a physical

sensor and the value of a physical variable derived from the value of a sensor

called here an abstract sensor. In this section, a relation among these values

is more precisely defined.

2.1 Physical and Abstract Sensors

A physical sensor is a device used by a computer to sample a physical vari-

able. For example, a computer controlling a reaction vessel might have

a thermometer as a physical sensor. The computer may obtain values

from the sensor either by polling it for its current value or by being asyn-

chronously alerted when a certain value is attained. It is convenient to

think of a physical sensor as a mechanism that returns pairs of values, such

as temperature and time, or position and velocity. By doing so, one can

talk of the physical variable as being a function, such as T(t) or v(x), and

the physical sensor producing samples (7_, t : 7_ = T(_ or (_3,_ : t3 = v(_)).

Either the sensor device or the controlling computer process may make this
association.

A physical sensor is not a very convenient mechanism. For example, with
the thermometer attached to the vessel:

The sensor has a limited accuracy, giving an uncertainty to the tem-

perature. This uncertainty is increased by delays incurred by sched-
ulers and networks.

The control program may be interested in a temperature at a time

the thermometer was not sampled. A value may be interpolated, but

to do so requires knowledge of the physical process.

• The sensor may have interesting perceptive properties; for example,

it might generate an interrupt if the temperature rises above 100

degrees. This is an important property of the sensor: it allows for an

1In the application of section 4, for example, the velocity of a train can be expressed
as a function of location.

5

accurate determination of when 100 degrees is reached. There may be

other ways to make the same kind of precise measurement, however.

It would be convenient if the control program could be the same for

any method of measurement, as long as the measurement is accurate

enough.

We define an abstract sensor as a piecewise continuous function from a

physical variable to a dense interval of physical values 2 We will indicate an

abstract sensor as a function such as _(t). When possible, we will simply

write _ if we are interested in the "current" value; that is, the sensor value

for the current value of t. Control programs will compute with abstract

sensors rather than physical sensors. An abstract sensor _ is correct if it

always bounds the value of the actual physical value. More precisely,

correct over D da

Vd e D : min T(d) < T(d) < max T(d)

Given a physical sensor, it may not be easy to implement an abstract sen-

sor. In general, it may require considerable knowledge about the physical

process being monitored. For example, suppose the manufacturer of the

thermometer claims it returns a value T with an accuracy of e degrees, and

the computer can read the sensor's value within 6 seconds of the thermome-

ter being sampled. If the time the computer program receives T is t, all we

know is that 3t0:t-6 _< to < t: T-e/2 _< T(to) < T + e/2. This, alone, is

not sufficient information to define an abstract sensor _.ff(t), since we don't

know how to interpolate values between successive sensor readings.

Suppose, however, we know from the physical process being monitored

that I_1 < A. This bound on the change of T allows us to interpolate

2An abstract sensor T(d) can be represented as a pair of function Train(d) and T,na,(d),
where T(d) is the interval [T,n_,_(d) .. Tmax(d)]. With this representation,

min T(d) = Train(d), max T(d) = TmG,(d), and IT(d)l = Troop(d) - T,_,(d)

6

intermediate values with a known accuracy. The abstract sensor _(t) can
be defined as

- _/2 - A(t - 7 + _) < T(t) < _ + el2 + A(t - 7 + _)

fort> _

Unlike physical sensors, abstract sensors can be compared with each other.

In section 3, this property will be used to construct a fault-tolerant abstract

sensor.

2.2 Abstract Sensors in Specifications

A specification of a process control program may have to be changed when

expressed using abstract sensors. It is not possible to take a control program

written in terms of physical variables and for each reference to a physical

variable substitute a reference to the corresponding abstract sensor. For

example, consider a reaction vessel with a pressure relief valve. One safety

condition might be that whenever the pressure p is greater than some ceiling

Pmax the valve is open (R); or, p > Pmax = R. The condition _ > Pmax -- R

does not make sense; what does it mean for an interval (p) to be greater
than a value?

Let S be a condition on the system and V be the set of physical variables

in S that will be accessed through abstract sensors. We need another

condition S _ that contains no references to any vl E V but may instead

contain references to _7. The only a priori constraint we have on S r is that

it reduces to S when the abstract sensors have perfect accuracy:

(s' A(Vi: I_ = 0)) _ Sv':°'
Vi:W

There are several ways such an S r can be constructed; for example, we

could replace all references to vi in S with references to the midpoint of _.

However, if we assume that all values in v7 have the same likelihood of being

valid, we have two possibilities. We can either require that all points in

satisfy S or that there exists at least one point in _ that satisfies S. More

7

precisely, for each physical variable vi the condition S can be generalized

as:

S' _f Vv, 6 v?: S or

S' a__,f3v_ 6 v7: S

The generalization of S cannot be done automatically, since it is really a

refinement of the problem specification. One approach is to consider the

states that are excluded by S, and then expand this set if possible. In the

example above, we are probably most interested in avoiding an explosion

of the vessel. If so, the condition we want is (3p E p: p > p,,a_) = R, and

we would accept the risk that the pressure valve may open prematurely.

As another example, we might want to assert that a catalyst is injected

(C) only when the pressure is above a minimum value, or C =_ (p > p,,,,).

In this case, the state we are trying to avoid is one where the catalyst is

injected at too low a pressure, so we would generalize this condition to

C _ (Vp 6 p : p > p,,,). Note that in this case we admit no states that

violate the original condition.

3 Fault-Tolerant Abstract Sensors

Given n independent abstract sensors and a failure model, we would like

to construct an abstract sensor that is provably non-faulty. We will first

consider the simple failure model of arbitrary failures 3. We will assume a

sensor is either faulty, in which case it can return any value, or the sensor is

correct and always returns a correct value. We assume that no more than

f of the n sensors can be faulty.

3.1 Arbitrary Failures

Let _ and _j (i # j) be two abstract sensors for the same physical value

T. If _i and _ are both correct, then by definition T must be in both

3This failure model has also been called Byzantine failures or malicious failures.

intervals. Put another way, the intervals _; and _j must intersect, and
their intersection must contain T.

If we have no more than f faulty sensors, any set of n - f or more mutually

intersecting sensors may be correct, since they each share a common value.

Conversely, any point not contained in at least n - f intervals cannot be

the correct value. Let l be the smallest value contained in at least n - f

intervals and h be the largest value contained in at least n - f intervals.

The correct value T is then bounded by l and h. This gives us our sensor

averaging algorithm.

Algorithm 1 Fault-tolerant Sensor Averaging

Specification: Let ,.q be a set of the values of n abstract sensors of

the same physical state variable, read at the same point in their

domain (e.g. at the same time). Given a maximum number of

faulty sensors f, find the smallest interval nl0,(S) that contains

the correct physical value.

Implementation: Let I be the smallest value contained in at least

n - f of the intervals in S and h be the largest value contained

in at least n - f of the intervals in S. Let NI,,,(S) be the interval

spanning I < nt,,(S) < h if I and h exist; otherwise, let nl,,(S)
be 0.

Algorithm 1 is inexpensive - it can be easily implemented in O(n log n)

time, which is a lower bound. One implementation is given in [MO83].

This definition of nt,,,($) can contain values that we know cannot be the

correct value. For example, figure 3 shows the intersection of three intervals

a, b and c. Iff = 1, the correct value must be within I1 or I2. By

algorithm 1, however, we define the correct sensor value to be I. We do

this to preserve the "shape" of the sensor as seen by the control program.

Our program is written for an abstract sensor, which is a single interval,

and the interval defined by algorithm 1 is the smallest single interval that
contains the correct value.

The width of a sensor's value determines its inaccuracy. The following

theorem gives an upper bound on the number of faulty sensors one can have

a c
I i1 | |_ ! -
I I i" I -

! ! I !

I I _ I I

I I I_ I I

I_ I I -I

I I I I

I I I I

'1"11 'I2'I I I

I

Figure 3: Intersection with n = 3 and f = 1

and still have a bound on the inaccuracy on the result. Define the operations

mini and maxi to be the i th smallest and largest values of their operand

(a set of values) respectively. Note mini = max,-i+l. For example, if

S = {13, 14,15} then min3(S) = maxl(S) = 15.

Theorem 1 If f < ['2-_-] and nI,,.,(S) # 0, then

Int,.(s)l _<min21+l{lsl : s s}

If f >_ L_2--_A-J,the derived interval can be more inaccurate than any sensor

in the system. An example is shown in figure 4 4.

Theorem 1 bounds the accuracy of the derived sensor in terms of the accu-

racy of the values read. However, if this bounding sensor is faulty, one might

worry about the bound being meaningful. Consider the sensors shown in

figure 5. If abstract sensor c is faulty and we allow faulty sensors to be

arbitrarily inaccurate, the derived sensor can be more inaccurate than any
correct sensor.

4Unless stated otherwise, all the proofs of the theorems given in this section are pre-
sented in section 3.4.

10

a c

I_ It _- _ !

I I

i b i
I I

I _ 7.- I
I I

I I
I I
i T i
I al It I

Figure 4: Intersection with n - 3 and / = 2 >_ ["2-'_]

In many applications, there exists a limit on the inaccuracy of a sensor. For

example, if our abstract temperature sensors are all polled at roughly the

same time, the accuracy of the abstract sensors will not differ significantly

from each other. Thus, the bound of theorem 1 is reasonable. If sensors

can have widely differing accuracy, however, fewer failures can be tolerated.

Theorem 2 gives this bound.

Theorem 2 Let C be the (unknown) subset of S that are correct. If/< [_]

and nj,.(s) # 0, then

In_,. (S)l < mins+l{isl : s E ¢}

Under the conditions of theorem 2, a minimum of four sensors is necessary

to tolerate a single faulty sensor. Figure 6 is an example of this case.

3.2 Probabilistic Interpretation

The previous section gives upper bounds on the inaccuracy of the correct

abstract sensor calculated by algorithm 1. However, the actual accuracy

can be much better. If an abstract sensor _,(t) is correct, we can define the

probability distribution function of the physical value in the range "si(t).

Let this probability that s(t) = s' E _i(t) be f_(s')ds. The expected value of

11

a

; I
t

b
!

_m
I

C i
I

111 II
I I

i I '
! I

! I
i q' it I

Figure 5: Intersection with sensor c faulty

the accuracy of the fault-tolerant sensor, E(I nl,. (s)l), has the following

property.

Theorem 3 Assume that each sensor is distributed identically and is inde-

pendent of each other. If

f_(min _(t)) > 0 and fi(max _'i(t)) > 0

then

lim E(In/,.(S)l)= 0 for any_ed f
rt---¢_

The rate of convergence to the correct physical value depends on the ac-

tual distribution function. For example, let f_ be the uniform distribution
function

I,(s) = (_ se _,(t)0 otherwise

In this case, the expected value of I NI,, ($)1 approaches zero at a rate of

O(1/n); here, even a modest amount of replication can yield a very accurate

abstract sensor. A proof of this rate of convergence, along with a proof of

theorem 3 can be found in [Mar84].

12

a
I

I

I

I

I

I

I

I

I

I

I

I

I

I

b

C

d

I

I

I

I

ILl

I

I

I

l

I

I

Figure 6: Intersection with rt = 4, f = 1 and sensor d faulty

As an aside, the probabilistic interpretation of this section might suggest a

fuzzy logic approach to this problem [Zad75]. The interpretation is straight-

forward: define At,.(,S, s) as the disjunction of the (---"I) terms formed by

the conjunction of n - f fuzzy boolean values b_ whose membership is taken

from the uniform probability distribution function Ii(s). ^l,r, is equivalent

to the intersection of the n - .f cliques s in .9. If we changed algorithm 1 to

return a set of intervals rather than a single interval, A:,. and hi,. would

be equivalent.

3.3 Other Failure Models

If a sensor is known a priori to be faulty, the bounds given in theorems 1

and 2 can be improved. Faulty sensors need not be included in S when

calculating N/,,,($), and n and f are reduced accordingly. In particular, if

we can identify f faulty sensors, we can calculate a correct abstract sensor

SA k-clique is an intersection of k intervals.

13

that is at least asaccurate as the most accurate sensor. More formally, let

142 be the subset of S that are known to be faulty, and let IW I = w < f.

Then, Al_w,,,_w(S - W) is a correct interval, and theorems 1 and 2 hold.

The main problem is determining when a sensor is faulty. Ideally, a sen-

sor could be self-diagnosing, and return the value 0 when faulty. Follow-

ing [Sch84], we will call such sensors fail-stop. With fail-stop sensors, we

can tolerate up to n - 1 failures and will calculate a sensor that is at least

as accurate as the most accurate correct sensor and at best approaches the

exact physical value.

Of course, fail-stop sensors are useful only if they can be implemented. We

can use algorithm 1 to detect failed sensors under an arbitrary failure model.

This algorithm is very simple: any sensor in S that does not intersect

nl,,,(S) cannot contain the correct value, and is therefore incorrect and has
failed.

Algorithm 2 Detecting failed sensors.

Specification: Given n sensors S and a maximum number of

faulty sensors f, find a subset of the sensors in S that are in-

correct.

Implementation: Let nl,n(S) be the interval calculated by al-

gorithm 1. If W is the set of sensors that are known to be

incorrect, add to _'Y the sensors

{s : s _ S Asn(n1,.(S)) =0}

It is likely that algorithm 2 will fail to detect some of the incorrect sensors.

For example, using algorithm 2 with the sensors in figure 3 yields 142 = 0,

since we cannot tell which of the two sensors a, c is incorrect.

So far, we have assumed that once a sensor fails it remains failed, so once

a sensor is added to 142 it will remain in 14/. This assumption may not

be realistic for sensors, since an abstract sensor may maintain no state. It

seems natural to assume a sensor may occasionally fail in an apparently

malicious way, and then "heal" itself and subsequently yield correct values.

So, a natural extension to the arbitrary failUre model is to assume that

14

at all times t there exists a set of faulty sensors Y(t) such that _(t) may

differ from .T'(t') when t # t', and Vt: I.T'(t)l < f. Unfortunately, we cannot

construct a correct abstract sensor under these conditions. We must also

guarantee that there exists a period A such that the number of failures in

all intervals of time no longer than A the number of failures is bounded:

3A > ovt:l{ses: 3,_:o_<,__<_:s E .r(t+,_)}I--f

If algorithm 1 obtains fresh values from each physical sensor used in calcu-

lating S and algorithm 1 runs no longer than A seconds, it can still be used

to construct a correct sensor. As A ---. co this model becomes the earlier

arbitrary failure model.

3.4 Proofs

To prove theorems 1 and 2, we will need a few lemmas.

Lemma 1 Let S be a set of intervals containing at least one c-clique. Fur-

thermore, suppose that all c-cliques in S have exactly i intervals in common

with each other. Then,

iSi> { i i>c- 2c-i i<c

Let S be a smallest set of intervals such that all c-cliques in S have exactly

i intervals in common. By definition, this set must contain an/-clique, so

n > i. If i > c, the smallest set consists of only the i-clique, so n = i. If

i < c, the set must contain more than one c--clique, for otherwise the single

c-clique has c intervals in common with itself. Since S has the smallest

possible number of intervals, it must contain two c-cliques. These two

cliques have i intervals in common, so each has c- i intervals not in common

with each other. The minimum number of intervals meeting this condition

isn=2(c-i)+i=2c-i. []

Lemma 2 If n > 2c, there exists a set of intervals S such that all the

c-cliques in S share no intervals.

15

Let S contain two distinct c-cliques and n - 2c distinct 1-cliques. This set
satisfies the lemma. []

Lemma 3 Given a set ofn intervals S containing at least one c-clique (n <

2c), the smallest number of intervals i in common with all c-cliques in S is
n - 2c.

Suppose S has no more than i _ < i intervals in common with all c-cliques.

By lemma 1, the smallest such set contains 2c - i' > n intervals, a contra-
diction. []

Lemma 4 Let s E S be any member of all maximal cliques orS. The closure

of the intersection of the maximal cliques is no larger than s.

The intersection of any maximal clique cannot contain any point outside of

s, since by definition that point is not in an intersection containing s and

s is a member of each clique. The closure only adds points between the

intersections. Since S is a set of intervals over the reals, s must contain all

points between the maximal cliques, so the closure does not add any points

in s. Since all the points in the closure are also in s, the closure cannot be

larger than s. []

Theorem 1 can now be shown. By algorithm 1 the maximal clique in S

must be at least as large as f, for otherwise ¢'1I,,(S) = 0. By lemma 3

at least n - 2f intervals intersect all cliques. By lemma 4 the closure of

the intersection cannot be larger than any of these n - 2f intervals. The

closure, however, may be larger than any of the remaining 2f intervals. In

the worst case, these remaining intervals are the smallest ones in S, and

the theorem follows. Additionally, by lemma 2 we know that the bound on

f is an upper bound. []

Theorem 2 can now be shown. By theorem 1,

Inl,.(S)l < maxn_2l{'v's E £}

For Ini,.(S)l to be bounded by a correct sensor, n - 2f > f or n > 3f.

This corresponds to the faulty sensors being the most inaccurate, so

16

Q

ln/,.(S)l < minf+l{VS E C}

4 Example

The methodology presented in this paper is not an automatic one. It may

take some work to use abstract sensors, in that the original specification

may have to be changed to accommodate abstract sensors, and it may be

difficult constructing a set of independent abstract sensors. In this section,

we show how a specification can be converted from using physical state

variables to using abstract sensors, and how an abstract sensor can be

implemented from a physical sensor.

As part of the Cornell Real Time Reliable Distributed Systems project, we

are developing a correct process control program from its specification. One

of the problems we have chosen is that of a train traversing a sequence of

n track segments. Associated with each track segment i is a track circuit

a, that, when nonfaulty, is true if and only if the train occupies that track

segment. Assume that segment i spans the positions ci through ci+l where

(Vi : 0 < i < n : cl < ci+l). The train has position x and velocity v, has

zero length 6, starts at position Co and moves in the direction of increasing

x (towards cl). Each track segment has a minimum and maximum speed

mini and mazi; if the train exceeds these limits, it will derail. Additionally,

there is a random communications delay associated with all messages in the

system that is bounded by _ seconds.

Our safety condition is

def
S = ci<z<ci+x =#mini<v<_ mazi

This condition is expressed in terms of physical variables, so we need to

change ..q. The obvious condition is

S' d,t=(3x _ _: c__<z _< c,+1) =*

_This is not an unreasonable assumption; given a train of length L and a track system
K, one can construct another track system K' on which a train of zero length is constrained
in exactly the same way as the L-length train is on K.

17

(Vv E _ : mini g v < mazi)

since this also excludes the unsafe states (at a penalty of running the train

conservatively).

We will show how an abstract sensor of position z, can be constructed from

the track circuits _ri. The simplest way to do so is to assume a bound the

velocity of the train v < v,,a_. Define the global array:

var train[i]: {before, in, after} := before;

Define a polling process for each track circuit ai. Note the delay is repre-

sented by a delay statement; the implementation must ensure that no more

than A seconds elapse between successive polls of a sensor. The value of

A must be small enough that the polling process does not "miss" the train

traversing the track segment it is monitoring: A < (ci+l -- ci - _v,na_)/v,_.

The assertion I is a loop invariant, and t is the current time.

process Poll[i] --

begin

{I -train[i] = before =¢, 0 _< x(t) < c, + _v_._ A

train[i] = in =_ ci < x(t) < ci+l +/_v_,,_ A

train[i] = after :. ci+_ < z(t) < cn}
do true

delay A;

if a,^ (train[i] = before) _ train[i] := in

[]-_ai^ (train[i] = in) --, train[i] := after

[] "ai ^ (train[i] = before) _ Skip

n a, ^ (train[i] = in) _ skip

[] (train[i] = after) _ skip
fi

od;

end

The abstract sensor, defined functionally, comes from the loop invariant I

and the distance the train could have moved since the last time a, was read:

18

x-, = if train[i] = before -. [0 .. c, + (6 +/X)v.,.x]

[] train[i] = in --. [c, .. c,+1 + (,5 + A)v.,.,]

[] train[i] = after --, [c,+1 .. c.]
fi

This is a simplistic abstract sensor for z. One can define a more accurate

_i by noting the time a track circuit first comes on. The implementation

of this sensor is more complex, but has a structure similar to the one given
here.

5 Discussion

This paper presents a four-step process, through which a program written

in terms of physical state variables is transformed to one that reads the

physical state variable through a set of physical sensors, some of which

may be faulty. The degree of sensor replication depends on the failure

model we assume. Figure 7 summarizes the maximum number of faulty
sensors that can be tolerated for the three failure models considered in this

paper.

Failure Model fm.x rain n: f = 1

[(n - 1)/3j 4arbitrary failures with

unbounded inaccuracy
arbitrary failures with

bounded inaccuracy

fail-stop failures

[(n - 1)/2J 3

n-1 2

Figure 7: Maximum failures for different error models

The methodology presented here is incomplete, however. For example,

there are other reasonable failure models that we are investigating. While

some of these will undoubtedly reduce to the models presented here, others

may not. We have also only considered sensors that read a single physical

value from a real domain. There are other kinds of sensors; for example,

19

a sensor denoting whether or not a door is open, or a sensor that returns

the altazimuth coordinates of an airplane. We are currently extending the

material in this paper to accommodate these more general sensors.

Acknowledgements This work profited from several discussions the au-

thor had with Fred Schneider, Sam Toueg and Jacob Aizikowitz. In addi-

tion, Ken Birman, Amitabh Shah, and Mark "Wood read and commented

on earlier versions of this paper.

References

[Lain84]

[LSP82]

[Mac84]

[Mar84]

[MO83]

[MS85]

Leslie Lamport. Using time instead of timeout for fault-tolerant

distributed systems. A CM Transactions on Programming Lan-

guages and Systems, 6(2):254-280, April 1984.

L. Lamport, R. Shostak, and M. Pease. The byzantine gener-

Ms problem. A CM Transactions on Programming Languages and

Systems, 4(3):382-401, July 1982.

I. M. MacLeod. Data consistency in sensor-based distributed

computer control systems. In Proceedings of the Fourth Interna-

tional Conference on Distributed Computing Systems, pages 440-

446. IEEE Computer Society, May 1984.

Keith Marzullo. Maintaining the Time in a Distributed System.

PhD thesis, Stanford University, Department of Electrical Engi-

neering, June 1984.

Keith Marzullo and Susan Owicld. Maintaining the time in a

distributed system. In Proceedings of the Third Symposium on

Principles of Distributed Computing, pages 295-305. ACM SIG-

PLAN/SIGOPS, 1983.

Steve Maheney and Fred Schneider. Inexact agreement: Accu-

racy, precision, and graceful degredation. In Proceedings of the

Fourth Symposium on Principles of Distributed Computing, pages

237-249. ACM SIGACT/SIGOPS, August 1985.

2O

[Sch84]

[Sch86a]

[SchS6b]

[Zad75]

Fred B. Schneider. Byzntine generals in action: Implementing
fail-stop processors. A CM Transactions on Computer Systems,

2(2):145-154, May 1984.

Fred B. Schneider. Combining theory and practice. Lecture at

IBM Workshop on Fault-Tolerant Distributed Computing, Asolo-

mar, CA, March 1986.

Fred B. Schneider. The state machine approach: A tutorial. Tech-

nical Report TR 86-600, Cornel] University, Dept. of Computer

Science, Upson Hall, Ithaca, NY 14853, December 1986.

L. A. Zadeh. Fuzzy logic and approximate reasoning. Synthese,

30:407-428, 1975.

21

m

